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INTRODUCTION 
Our goal is to create an intuitive interface that allows the           
user to make gestures to manipulate their physical        
environment. More specifically, the user controls the       
display through hand gestures under an XBox Kinect        
sensor. The image of the Kinect is read in real-time and           
translated into x-y and depth values, which are then sent          
to the Arduino and translated into a form that indicates          
which motors should run, which direction they should        
rotate in, and the number of steps they should run for. The            
motors allow the user to observe the linear motion of the           
objects on the actuated surface. 

While this project was intended to be just an initial          
prototype, the final product we created was able to         
achieve the design goals we had envisioned. In addition,         
this interface invokes further research and design in two         
domains: first, it allows users to manipulate a 3D surface          
remotely, encouraging the development of devices to       
precisely mirror gestures in applications such as remote        
teaching or accessibility services. Next, it raises the        
possibility of interacting with our world in a 3D manner          
rather than the 2D manner that prevails in our phone and           
computer screens.  

The two main parts of this design are the user interface           
and the block display. The user interface is composed of          
the XBox Kinect and the Processing code used to read the           
image from the Kinect. The image received from the         
Kinect is split into a grid of 5 x 6 squares from the area              
that within the range of detection, and each square is          
assigned a depth value based on the distance of the object           
in the square from the Kinect. The block display is          
composed of laser cut and 3D printed parts that are          
assembled into a box with racks inside the box to hold the            
motors in place. Each of the motors is connected to a           
pinion and aligned with a rack. The rack is then attached           
to a block, which is what the user sees on the top of the              
box. The rack and pinion system is used to translate the           
rotational movement of the motors into a linear movement         
so that the blocks can move up and down based on the            
number of steps specified by the stepper motor. A library          
called AccelStepper was used to control the simultaneous        
movement of each motor and to give the user a more           
realistic experience with the display. Finally, each motor        
is wired into one of three Arduino boards, and two power           
supplies were used to power all 30 motors.  

The design goals we set for this prototype were to create a            
real-time display of an actuated surface that could be         
manipulated through user interaction in some way.       
Originally, we had intended on creating the user-interface        
display with 30 infrared sensors that would accomplish a         
similar goal as the Kinect. However, with the recent         
technological advances in motion detection, especially      
with the accuracy and detail of the Kinect image, we          
thought that using a Kinect would lead to a more realistic           
prototype that is suited for more modern technologies. In         
addition, while our project hardly touched on the image         
features of the Kinect, OnShape gives the audience an         
idea of how 3D remote sensing may work in future          
projects. Another design goal we had was to introduce the          
capabilities of 3D object manipulation. While our       
prototype turned out to be a display rather than serve a           
practical use, the idea that we could manipulate the         
physical world remotely was highly emphasized in the        
display.  

RELATED WORK 

The MIT Tangible Media Group has been working on         
several projects with similar mechanics for the past few         
years, including Relief, Recompose, inForm, and      
AnimaStage. Each of these projects uses gesture sensing        
to manipulate a series of independent parts.  

As a precursor, Leithinger and Ishii’s work on project         
“Relief: A Scalable Actuated Shape Display” allows users        
to render 3D models, such as geographical terrain,        
afforded through a malleable surface. That is, users can         
push and pull the pins to animate their displays. Unlike          
project “Relief”, our design separates the user control        
from the display while maintaining a natural mapping        
interface. Nonetheless, OnShape does afford the      
possibility of representing interesting 3D forms [5]. 

Recompose was the first time they attempted this type of          
project, in 2011. The completed project recorded the        
user’s gestures over the actuated surface as input, then         
translated the gestures into functional manipulation to       
move each of the blocks. The system was implemented         
with a series of machinery stacked in space, from top to           
bottom: the projector and depth camera, the gestural input         
range, the direct manipulation range, the actuated surface,        
and the computer. The camera was able to recognize the          
direction and depth of the user’s gestures and reflect the          
details in the moving parts [6].  



While Recompose focused on the ability to physically        
manipulate an actuated surface, its successor project       
inForm in 2013 built upon this ability by rendering 3D          
content along the surface and allowing users to physically         
interact with that content [4]. For example, terrain and         
architectural models could be replicated by the actuated        
surface and then manipulated by the hands of urban         
planners and architects. Another application involves      
using the shape display to create dynamic UIs in the form           
of buttons, sliders and knobs that the user can touch, push           
and interact with to change displays.  

Finally, AnimaStage was the lab’s most recent project in         
2017 and allowed the user to craft objects directly on the           
surface, then “animate” the crafts and the surface through         
direct pin control, indirect pin control, and invisible string         
control [9]. The intended work presented in this paper is          
functionally similar to the projects from the Media Lab,         
but due to financial and hardware constraints, the ability         
to control specific elements such as pressure were omitted         
from this project, and the number of parts was reduced to           
accommodate the limitations on the amount of power that         
is available for running the motors.  

Another interesting application of actuated surfaces can       
be found in the project, “Kinetic Blocks – Actuated         
Constructive Assembly for Interaction and Design”. Their       
project uses a pin-based shape display to accurately move         
and manipulate objects on the surface to assemble and         
disassemble structures. Likewise, the design of OnShape       
allows for manipulation of objects on the surface,        
however this is controlled by realtime user input and does          
not attempt to assemble structures [13]. 

Festo’s project “WaveHandling” also sheds an interesting       
light on the utility of actuated surfaces. Their technology         
consists of many bellow modules that deform the surface,         
creating a wavelike motion that transports an object about         
the surface in a targeted motion. Due to limitations in          
budget, OnShape’s design does not allow for a        
comparable level of precision in movement, but the user         
will still be able to manipulate the surface to move objects           
around [12]. 

Similarly, many projects involving gesture sensing have       
been implemented and simplified for commercial      
purposes as opposed to the research emphasis in the         
Media Lab. For instance, “3D Motion Tracking” is a         
project published on Instructables, a site where people can         
upload how to tutorials for their different creations,        
including Arduino projects. The article teaches the user        
how to track 3D motion using an Arduino by constraining          
the user’s actions in a cardboard cube and connecting         
wires from the Arudino to the sides of the cube [7]. 

Our project also relies on controlling the precise motion         
of multiple stepper motors at once. One project that         
demonstrates a similar feature is “Arduino Marble Maze        
Labyrinth” by Ahmed Azouz on Arduino’s Project Hub.        
This project uses three servo motors operating       
simultaneously with very slight adjustments in rotation to        
tilt and rotate a physical maze in 3D space, allowing the           
user to roll a marble from one end of the maze to the             
other. This project’s physical design and code serve as         
excellent examples of how to get the motors operating         
precisely as a unit [2]. 

A similar challenge on a much greater scale is found in a            
project entitled “In Servo We Trust!” by Moushira on         
Arduino’s Project Hub. This project was a personal        
challenge and experiment for the creator to control 135         
servos with a single Arduino. Although the scale of this          
project is far beyond what we intend to accomplish, the          
designer’s detailed discussion of the unique challenges       
and considerations of operating and powering large       
numbers of servos is important to our own work [8]. 

While our final design turned out to be fundamentally         
different than the examples we researched for the initial         
design, we were still able to draw on a lot of the previous             
work to implement our project. Specifically, we used the         
previous large-scale projects from the MIT Media Lab to         
inspire how we wanted our user to interact with our          
project, and we learned from the examples of operating         
multiple servo motors simultaneously in order to set up         
our own grid of 30 stepper motors.  

 
FINAL PROTOTYPE 

 

Figure 1. The final prototype in action. 

 

 



A Drive folder containing our video demonstrations from        
our demo: 

https://drive.google.com/drive/folders/1T5nqeyoQw1s43o
psE2CNFIJJmqWGMYKs?usp=sharing 

Github repository with all of our code:       
https://github.coecis.cornell.edu/vml39/onshape 

Laser cutting and 3D printing files:  

https://drive.google.com/drive/folders/1BrC6S_vEtUnvS
RoOc0AjXmQiFpJZlp64?usp=sharing 
 

FUNCTIONAL UNITS 
There are two main functional units to the project: the          
block display and the user control area. The user         
interaction aspect is executed with a Kinect, where the         
Kinect is able to detect the user’s hand motions in a 3D            
plane. The boundaries of the Kinect’s sensor determine        
how the area in between is split into thirty squares in the            
x-y coordinate plane. Each of these squares corresponds        
to a block in the block display. The depth of the user’s            
hand in relation to the Kinect determines the height of the           
block when it rises in the block display. The functional          
unit of the box display is comprised of stepper-powered         
pin movement, where the timing and amount of stepper         
rotation is controlled from the translated data being        
received from the Kinect.  

Box and grid design 

 

Figure 2. Block display (external) 

Our use of materials and range of motion in our design for            
the box and grid display has changed since our initial          
design. Instead of acrylic, the outer box and grid         
components will now be made out of chipboard and the          
thirty blocks themselves will be made out of a lighter,          
thick, paper-like material used in architectural modeling       
that is sturdy but still much lighter than chipboard. We          
have also added an additional 5 cm of vertical motion to           
the blocks by extending their length and the length of the           

rods that support them to create a grander effect and          
increased control over the depth of the block based on          
user feedback. 

The block display integrates several essential      
components. Visible from the outside are the 30 blocks         
distributed across a chipboard grid with slots measured to         
fit each block precisely. Each block is spaced 2 cm apart           
from each other on every side. At rest, the boxes stick just            
1 cm above the surface of the grid, with the other 14 cm             
of the block length housed inside the box for a total height            
of 15 cm. As shown in Figure 2, each of these blocks is             
hollow to accommodate its internal components.  

The exterior frame of the box will be 48 x 40 x 23 cm.              
The sides of the box will be slotted to allow for the            
mounting of interior cooling fans, accounting for the heat         
that the running of 30 motors will produce.  

 

Figure 3. Demonstration of the fit of interior box and 
grid components 

From our initial design we made several revisions to the          
box and grid assembly. The first of which was that we           
created L-angle brackets as a mounting system for        
securing the racks to the interior of the box. This will be            
discussed in more detail in the “Stepper motor rack”         
section. We also decided to secure the four sides of the           
box using stronger, thicker 3d printed L-angle brackets        
and wood glue on the inner edges. We realized quickly          
that the chipboard sheets we had been supplied were not          
tall enough to account for the needed height of the box, so            
we amended our outer box design to be made of plywood.           
This made it necessary to use a drill and longer screws to            
secure the box together. We also decided after assembling         
the final prototype to leave one side of the box off           
entirely, eliminating the need for the cooling fans and         
slotted sides we had planned for in our initial design. This           
kept the inside of the box cool while allowing for easier           
monitoring of the interior mechanism and creating a cool         
view for the demo. The final box and grid design          

https://drive.google.com/drive/folders/1T5nqeyoQw1s43opsE2CNFIJJmqWGMYKs?usp=sharing
https://drive.google.com/drive/folders/1T5nqeyoQw1s43opsE2CNFIJJmqWGMYKs?usp=sharing
https://github.coecis.cornell.edu/vml39/onshape
https://drive.google.com/drive/folders/1BrC6S_vEtUnvSRoOc0AjXmQiFpJZlp64?usp=sharing
https://drive.google.com/drive/folders/1BrC6S_vEtUnvSRoOc0AjXmQiFpJZlp64?usp=sharing


performed well and remained secure throughout the       
demonstration. 

Stepper-powered pin movement 

Pin movements are powered by 30 ELEGOO 28BYJ-48        
ULN2003 5V small stepper motors. These motors connect        
to their own individual driver boards and use four further          
wires to connect to the digital pins of the Arduino Mega           
2560. The 30 motors were connected to 3 Arduino Mega          
2560s with 10 motors connected to each. The        
AccelStepper library is used to regulate the simultaneous        
stepping of each motor. I.e., while one motor is stepping          
up, another can be stepping down. 

Each central cylinder of the stepper motors is fitted with a           
3D printed pinion 2 cm in diameter, designed in         
conjunction with a 3D printed rod. The pinion is a small           
24-teeth gear modelled after the Mc-Master Carr       
component with a width of ¼ inch. Our initial Fusion 360           
model of the rack and pinion had small teeth which an           
earlier iteration revealed would cause slippage. In the        
final prototype we made the teeth bigger which was much          
more effective in guaranteeing consistent locking between       
rack and pinion. Additionally, the motors are powered by         
two 5V power supplies. After experiencing issues with        
motors drawing too much current, we eventually       
determined, with the guidance of Professor Guimbretière,       
that having two 5V 2A power supply to provide voltage to           
15 motors each would be sufficient as opposed to our plan           
of using 5V voltage regulators. The power supplies were         
able to move the motors as expected. 

One aspect of the design of pin movement that we did not            
consider was how we would zero the system in between          
demos. It is important that when starting the system that          
all blocks are on the same initial level. We were able to            
overcome the issue by pushing down on the blocks to          
level them when the system is powered off. 

 

Figure 4. Stepper Rack and Pinion 

Stepper motor rack 

The stepper motor rack has been redesigned significantly        
since our initial design. It became clear early on that our           
plan to use L-shaped hooks to keep the rods in place           
would require attaching these pieces by hand since the         
laser cutter cannot render 3D pieces, and this would create          
issues of human error with lining the components up         
precisely. We then moved on to the idea of using a set of             
shelves, one above and one below the motor rack, with          
perfectly sized slots in them to keep the rod in place and            
pin it carefully between these shelves and its pinion.         
However, we again struggled with the idea of carefully         
measuring the location of all three of these layers of          
shelves and racks in the box to make for a perfect           
alignment. With all this in mind, we created a new motor           
rack design that will create a very precise and snug fit           
while still being easily modeled in Fusion 360 and laser          
cut for precision. 

There will be five motor rack units total, with each unit           
housing six motors. The motor racks will feature a         
vertical piece with keyhole shaped windows for each        
motor to mount into and holes for mounting the motor          
with screws. Each motor rack unit will also have two          
stabilizing racks built in at the top and bottom and fixed           
horizontally to the rack at 90 degree angles. Additional         
screw holes on either end of the motor rack unit will           
allow for a 3d printed bracket to screw securely into the           
sides of the main frame at either end to hold the apparatus            
securely in place.  

 

Figure 5. Motor rack with keyhole design. Stabilizing 
racks are mounted along the top and bottom edge. 

https://www.mcmaster.com/2662n8


 

Figure 6. An example of one row of the grid, with six 
motors in the row. This demonstrates the basic layout 

and spatial orientation of our features. 
 

After producing these new rack designs on the laser cutter 
we addressed the issue of attaching all three pieces per 
rack to each other and mounting them to the outer frame 
of the box. We used superglue to adhere the rack pieces to 
each other and then 3d printed L-angle brackets that 
would mount either end of the rack to the wooden box. 
We had originally planned on drilling holes in the box and 
the rack to mount these brackets using small screws and 
nuts. However, we were concerned with the precision that 
would be required to mark where to drill the holes in 
exactly the right place for each rack to be perfectly spaced 
apart and perfect in height from the bottom of the box, 
and with the idea that if we put a hole in the wrong spot 
our mistake couldn’t be easily fixed or adjusted. We were 
also concerned that the chipboard might split if we tried to 
drill two holes in such a small area. Therefore, we 
modified our design to use superglue and wood glue to 
attach the racks to the box so that we could make last 
minute adjustments for precision before the glue set. We 
also attached an additional L-angle bracket from the 
bottom horizontal piece to the box to prevent rotation of 
the racks, as per Professor Guimbretière’s advice. During 
their final performance the racks were quite sturdy, and 
were not brought off the box by the weight of the stepper 
motors nor did they twist or become unstable when the 
rods moved up and down within the slots. 

User interaction space 

The goal of this functional unit is to allow the user to 
remotely interact with the block display. The execution of 
the user interface has been modified since the initial 

prototype from 30 IR sensors in a grid pattern to using an 
XBox Kinect. The Kinect is able to detect motion in a 3D 
space, and for the purpose of this project, will return the 
x, y, z coordinates of the user’s hand in this space. It does 
this using an RGB color VGA video camera and a depth 
sensor which work together to reconstruct the user’s 
motion and image. The Kinect is mounted from above, 
and a visual representation of the Kinect’s image is 
displayed on the computer to give the user feedback on 
their gestures. When the user moves their hand within this 
3D space, the Kinect sends data about the user’s hand’s 
image and its movements – specifically, the Kinect sends 
a byte to indicate which square is being activated and 
another byte with the depth data, constrained to a number 
between 0 and 9 (0 indicating the user’s gesture as closer 
to the Kinect’s camera). This data is then translated to fit 
a 30-block grid, where each block on the grid receives the 
information of whether there is an object in this space in 
the grid and if so, the object’s depth. This information is 
sent to the Arduino through the Serial port. Finally, the 
information is used to mark which motors need to be run 
and in which direction. This process allows 
near-simultaneous feedback in the block display based on 
the user’s movement under the Kinect. 

While the Kinect was able to create an accurate image of 
the user’s gestures, there were still a few issues that arose 
in its integration with the rest of the design. A small issue 
was that the Kinect was reconstructing the image with the 
x-y coordinates mapped inversely, i.e. the image was 
displaying the opposite of the user’s movements. It was a 
challenge to figure out a solution given the way we were 
sending data to the three different Arduino boards. The 
solution we found was to reconstruct the Kinect’s image 
from the bottom corner to the top when the image was 
being drawn on the screen. Another issue we faced was 
how to communicate with the three different Arduino 
boards and distinguish between which motor we were 
trying to communicate with. First, we had to set up the 
different boards to listen to different Serial ports, then 
determine the mapping of each board and its motors. 
Originally, 30 bytes were getting sent through a singular 
Serial port, and when put into a for-loop, would send the 
depth of each motor sequentially, from 1 to 30. However, 
the addition of two more boards meant the system had to 
first send a byte indicating which of the 30 motors it was 
referencing, and the boards had to listen to and process all 
of the information being sent. Finally, a challenge we 
were unable to overcome was the speed of the motors in 
comparison to the real-time feedback being received from 
the Kinect. The Kinect was able to quickly reconstruct the 
image each time it changed, but the motors had difficulty 
catching up to the speed of change and would lag behind. 
This was slightly compensated for on the Arduino side by 
constantly calculating the current position of the motor 



and the distance it needed to move to reach its target 
height before the motors were moved, but the 
computation and the way the board had to listen to all of 
the bytes being sent on the Serial Port before all of the 
motors could run simultaneously still caused a delay in 
the display. 

Combining the functional units to create 
gesture-controlled movement 

 

Figure 7. A visual of how the user will interact with 
the Kinect in a 3D space. 

 
Figure 8. How the user’s movement corresponds to 

each motor in the block display. 

The Kinect is mounted on a stand close to the block           
display. The user’s gestures below the Kinect which        
registers the 3D coordinates. The reading from the Kinect         
is stored and manipulated to control the movement of the          
blocks in the block display. That is, the field in the Kinect            
camera is mapped to the 30 blocks, and the depth sensor           
determines the range of motion by the block. In an earlier           
iteration of the prototype we intended on using 30 IR          
sensors to map the gestures to block movements. Below is          
a simplified circuit model depicting how a particular IR         
sensor would have mapped to a stepper motor.  

 

Figure 9. Simplified circuit  diagram showing the 
relationship between input and output. 

With the advice of Professor Guimbretière, we decided        
that using the Kinect for gesture detection would me more          
time efficient and easier to manage. 

Originally we planned on using 10 analog pins for the          
range sensor, 40 digital pins for the ten motors and 10           
digital pins for the 10 blue LEDs for each of 3 Arduino            
Megas. Since we abandoned the IR sensor setup, we had          
no need for the LEDs. However, we still needed to use 3            
Arduino Megas to connect the 30 motors to the digital          
pins. Using three Megas also helped us to provide room          
within the box for the racks and pinions to move free. In            
addition to that, it allowed us to run identical code          
through 3 serial ports, each of which controlled a specific          
Arduino board. When running the Kinect to communicate        
via serial port, it seemed to result in slow movement of           
the blocks. So while the Kinect eventually integrated well         
and the functionality was present, the movement of the         
system was slower than anticipated. 

Additional functionality that we were able to implement        
was to allow the distance of the user’s hand from the           
sensor surface to control for the height of the         
corresponding block. This mapping was achieved within       



our code by reading the size of the input value from the            
range sensor and incrementing the height of each block         
according to the relative value. This allows users to not          
only control which blocks move but by how much         
depending on whether they move their hand closer or         
farther from the surface. 

FUTURE WORK 

There were a few potential areas for improvement 
discovered after demonstrating our final prototype. 
Although our physical assembly functioned well enough 
to create the desired effect, we could have produced more 
impressive results had the pins moved faster in response 
to user input. In our final prototype the stepper movement 
was gradual and so users often had a hard time seeing 
how precisely the mapping of their movements was 
occurring since they would have to hold their hand in 
place long enough for the pins to move into place. Faster 
stepper motor movement could have been achieved by 
increasing the current limit or supplied voltage, but we 
hesitated to damage our motors in the process of 
experimentation with increasing the speed. Additionally, 
the assembly occasionally had some random blocks 
moving based on ghost inputs on the Kinect camera, but 
this problem is something we would likely not be able to 
solve with our assembly or integration.  
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