
Final Report: OnShape
Brenna Garcia

blg75@cornell.edu
Vivian Li

vml39@cornell.edu
Clive Duncan

cad324@cornell.edu

INTRODUCTION
Our goal is to create an intuitive interface that allows the
user to make gestures to manipulate their physical
environment. More specifically, the user controls the
display through hand gestures under an XBox Kinect
sensor. The image of the Kinect is read in real-time and
translated into x-y and depth values, which are then sent
to the Arduino and translated into a form that indicates
which motors should run, which direction they should
rotate in, and the number of steps they should run for. The
motors allow the user to observe the linear motion of the
objects on the actuated surface.

While this project was intended to be just an initial
prototype, the final product we created was able to
achieve the design goals we had envisioned. In addition,
this interface invokes further research and design in two
domains: first, it allows users to manipulate a 3D surface
remotely, encouraging the development of devices to
precisely mirror gestures in applications such as remote
teaching or accessibility services. Next, it raises the
possibility of interacting with our world in a 3D manner
rather than the 2D manner that prevails in our phone and
computer screens.

The two main parts of this design are the user interface
and the block display. The user interface is composed of
the XBox Kinect and the Processing code used to read the
image from the Kinect. The image received from the
Kinect is split into a grid of 5 x 6 squares from the area
that within the range of detection, and each square is
assigned a depth value based on the distance of the object
in the square from the Kinect. The block display is
composed of laser cut and 3D printed parts that are
assembled into a box with racks inside the box to hold the
motors in place. Each of the motors is connected to a
pinion and aligned with a rack. The rack is then attached
to a block, which is what the user sees on the top of the
box. The rack and pinion system is used to translate the
rotational movement of the motors into a linear movement
so that the blocks can move up and down based on the
number of steps specified by the stepper motor. A library
called AccelStepper was used to control the simultaneous
movement of each motor and to give the user a more
realistic experience with the display. Finally, each motor
is wired into one of three Arduino boards, and two power
supplies were used to power all 30 motors.

The design goals we set for this prototype were to create a
real-time display of an actuated surface that could be
manipulated through user interaction in some way.
Originally, we had intended on creating the user-interface
display with 30 infrared sensors that would accomplish a
similar goal as the Kinect. However, with the recent
technological advances in motion detection, especially
with the accuracy and detail of the Kinect image, we
thought that using a Kinect would lead to a more realistic
prototype that is suited for more modern technologies. In
addition, while our project hardly touched on the image
features of the Kinect, OnShape gives the audience an
idea of how 3D remote sensing may work in future
projects. Another design goal we had was to introduce the
capabilities of 3D object manipulation. While our
prototype turned out to be a display rather than serve a
practical use, the idea that we could manipulate the
physical world remotely was highly emphasized in the
display.

RELATED WORK

The MIT Tangible Media Group has been working on
several projects with similar mechanics for the past few
years, including Relief, Recompose, inForm, and
AnimaStage. Each of these projects uses gesture sensing
to manipulate a series of independent parts.

As a precursor, Leithinger and Ishii’s work on project
“Relief: A Scalable Actuated Shape Display” allows users
to render 3D models, such as geographical terrain,
afforded through a malleable surface. That is, users can
push and pull the pins to animate their displays. Unlike
project “Relief”, our design separates the user control
from the display while maintaining a natural mapping
interface. Nonetheless, OnShape does afford the
possibility of representing interesting 3D forms [5].

Recompose was the first time they attempted this type of
project, in 2011. The completed project recorded the
user’s gestures over the actuated surface as input, then
translated the gestures into functional manipulation to
move each of the blocks. The system was implemented
with a series of machinery stacked in space, from top to
bottom: the projector and depth camera, the gestural input
range, the direct manipulation range, the actuated surface,
and the computer. The camera was able to recognize the
direction and depth of the user’s gestures and reflect the
details in the moving parts [6].

While Recompose focused on the ability to physically
manipulate an actuated surface, its successor project
inForm in 2013 built upon this ability by rendering 3D
content along the surface and allowing users to physically
interact with that content [4]. For example, terrain and
architectural models could be replicated by the actuated
surface and then manipulated by the hands of urban
planners and architects. Another application involves
using the shape display to create dynamic UIs in the form
of buttons, sliders and knobs that the user can touch, push
and interact with to change displays.

Finally, AnimaStage was the lab’s most recent project in
2017 and allowed the user to craft objects directly on the
surface, then “animate” the crafts and the surface through
direct pin control, indirect pin control, and invisible string
control [9]. The intended work presented in this paper is
functionally similar to the projects from the Media Lab,
but due to financial and hardware constraints, the ability
to control specific elements such as pressure were omitted
from this project, and the number of parts was reduced to
accommodate the limitations on the amount of power that
is available for running the motors.

Another interesting application of actuated surfaces can
be found in the project, “Kinetic Blocks – Actuated
Constructive Assembly for Interaction and Design”. Their
project uses a pin-based shape display to accurately move
and manipulate objects on the surface to assemble and
disassemble structures. Likewise, the design of OnShape
allows for manipulation of objects on the surface,
however this is controlled by realtime user input and does
not attempt to assemble structures [13].

Festo’s project “WaveHandling” also sheds an interesting
light on the utility of actuated surfaces. Their technology
consists of many bellow modules that deform the surface,
creating a wavelike motion that transports an object about
the surface in a targeted motion. Due to limitations in
budget, OnShape’s design does not allow for a
comparable level of precision in movement, but the user
will still be able to manipulate the surface to move objects
around [12].

Similarly, many projects involving gesture sensing have
been implemented and simplified for commercial
purposes as opposed to the research emphasis in the
Media Lab. For instance, “3D Motion Tracking” is a
project published on Instructables, a site where people can
upload how to tutorials for their different creations,
including Arduino projects. The article teaches the user
how to track 3D motion using an Arduino by constraining
the user’s actions in a cardboard cube and connecting
wires from the Arudino to the sides of the cube [7].

Our project also relies on controlling the precise motion
of multiple stepper motors at once. One project that
demonstrates a similar feature is “Arduino Marble Maze
Labyrinth” by Ahmed Azouz on Arduino’s Project Hub.
This project uses three servo motors operating
simultaneously with very slight adjustments in rotation to
tilt and rotate a physical maze in 3D space, allowing the
user to roll a marble from one end of the maze to the
other. This project’s physical design and code serve as
excellent examples of how to get the motors operating
precisely as a unit [2].

A similar challenge on a much greater scale is found in a
project entitled “In Servo We Trust!” by Moushira on
Arduino’s Project Hub. This project was a personal
challenge and experiment for the creator to control 135
servos with a single Arduino. Although the scale of this
project is far beyond what we intend to accomplish, the
designer’s detailed discussion of the unique challenges
and considerations of operating and powering large
numbers of servos is important to our own work [8].

While our final design turned out to be fundamentally
different than the examples we researched for the initial
design, we were still able to draw on a lot of the previous
work to implement our project. Specifically, we used the
previous large-scale projects from the MIT Media Lab to
inspire how we wanted our user to interact with our
project, and we learned from the examples of operating
multiple servo motors simultaneously in order to set up
our own grid of 30 stepper motors.

FINAL PROTOTYPE

Figure 1. The final prototype in action.

A Drive folder containing our video demonstrations from
our demo:

https://drive.google.com/drive/folders/1T5nqeyoQw1s43o
psE2CNFIJJmqWGMYKs?usp=sharing

Github repository with all of our code:
https://github.coecis.cornell.edu/vml39/onshape

Laser cutting and 3D printing files:

https://drive.google.com/drive/folders/1BrC6S_vEtUnvS
RoOc0AjXmQiFpJZlp64?usp=sharing

FUNCTIONAL UNITS
There are two main functional units to the project: the
block display and the user control area. The user
interaction aspect is executed with a Kinect, where the
Kinect is able to detect the user’s hand motions in a 3D
plane. The boundaries of the Kinect’s sensor determine
how the area in between is split into thirty squares in the
x-y coordinate plane. Each of these squares corresponds
to a block in the block display. The depth of the user’s
hand in relation to the Kinect determines the height of the
block when it rises in the block display. The functional
unit of the box display is comprised of stepper-powered
pin movement, where the timing and amount of stepper
rotation is controlled from the translated data being
received from the Kinect.

Box and grid design

Figure 2. Block display (external)

Our use of materials and range of motion in our design for
the box and grid display has changed since our initial
design. Instead of acrylic, the outer box and grid
components will now be made out of chipboard and the
thirty blocks themselves will be made out of a lighter,
thick, paper-like material used in architectural modeling
that is sturdy but still much lighter than chipboard. We
have also added an additional 5 cm of vertical motion to
the blocks by extending their length and the length of the

rods that support them to create a grander effect and
increased control over the depth of the block based on
user feedback.

The block display integrates several essential
components. Visible from the outside are the 30 blocks
distributed across a chipboard grid with slots measured to
fit each block precisely. Each block is spaced 2 cm apart
from each other on every side. At rest, the boxes stick just
1 cm above the surface of the grid, with the other 14 cm
of the block length housed inside the box for a total height
of 15 cm. As shown in Figure 2, each of these blocks is
hollow to accommodate its internal components.

The exterior frame of the box will be 48 x 40 x 23 cm.
The sides of the box will be slotted to allow for the
mounting of interior cooling fans, accounting for the heat
that the running of 30 motors will produce.

Figure 3. Demonstration of the fit of interior box and
grid components

From our initial design we made several revisions to the
box and grid assembly. The first of which was that we
created L-angle brackets as a mounting system for
securing the racks to the interior of the box. This will be
discussed in more detail in the “Stepper motor rack”
section. We also decided to secure the four sides of the
box using stronger, thicker 3d printed L-angle brackets
and wood glue on the inner edges. We realized quickly
that the chipboard sheets we had been supplied were not
tall enough to account for the needed height of the box, so
we amended our outer box design to be made of plywood.
This made it necessary to use a drill and longer screws to
secure the box together. We also decided after assembling
the final prototype to leave one side of the box off
entirely, eliminating the need for the cooling fans and
slotted sides we had planned for in our initial design. This
kept the inside of the box cool while allowing for easier
monitoring of the interior mechanism and creating a cool
view for the demo. The final box and grid design

https://drive.google.com/drive/folders/1T5nqeyoQw1s43opsE2CNFIJJmqWGMYKs?usp=sharing
https://drive.google.com/drive/folders/1T5nqeyoQw1s43opsE2CNFIJJmqWGMYKs?usp=sharing
https://github.coecis.cornell.edu/vml39/onshape
https://drive.google.com/drive/folders/1BrC6S_vEtUnvSRoOc0AjXmQiFpJZlp64?usp=sharing
https://drive.google.com/drive/folders/1BrC6S_vEtUnvSRoOc0AjXmQiFpJZlp64?usp=sharing

performed well and remained secure throughout the
demonstration.

Stepper-powered pin movement

Pin movements are powered by 30 ELEGOO 28BYJ-48
ULN2003 5V small stepper motors. These motors connect
to their own individual driver boards and use four further
wires to connect to the digital pins of the Arduino Mega
2560. The 30 motors were connected to 3 Arduino Mega
2560s with 10 motors connected to each. The
AccelStepper library is used to regulate the simultaneous
stepping of each motor. I.e., while one motor is stepping
up, another can be stepping down.

Each central cylinder of the stepper motors is fitted with a
3D printed pinion 2 cm in diameter, designed in
conjunction with a 3D printed rod. The pinion is a small
24-teeth gear modelled after the Mc-Master Carr
component with a width of ¼ inch. Our initial Fusion 360
model of the rack and pinion had small teeth which an
earlier iteration revealed would cause slippage. In the
final prototype we made the teeth bigger which was much
more effective in guaranteeing consistent locking between
rack and pinion. Additionally, the motors are powered by
two 5V power supplies. After experiencing issues with
motors drawing too much current, we eventually
determined, with the guidance of Professor Guimbretière,
that having two 5V 2A power supply to provide voltage to
15 motors each would be sufficient as opposed to our plan
of using 5V voltage regulators. The power supplies were
able to move the motors as expected.

One aspect of the design of pin movement that we did not
consider was how we would zero the system in between
demos. It is important that when starting the system that
all blocks are on the same initial level. We were able to
overcome the issue by pushing down on the blocks to
level them when the system is powered off.

Figure 4. Stepper Rack and Pinion

Stepper motor rack

The stepper motor rack has been redesigned significantly
since our initial design. It became clear early on that our
plan to use L-shaped hooks to keep the rods in place
would require attaching these pieces by hand since the
laser cutter cannot render 3D pieces, and this would create
issues of human error with lining the components up
precisely. We then moved on to the idea of using a set of
shelves, one above and one below the motor rack, with
perfectly sized slots in them to keep the rod in place and
pin it carefully between these shelves and its pinion.
However, we again struggled with the idea of carefully
measuring the location of all three of these layers of
shelves and racks in the box to make for a perfect
alignment. With all this in mind, we created a new motor
rack design that will create a very precise and snug fit
while still being easily modeled in Fusion 360 and laser
cut for precision.

There will be five motor rack units total, with each unit
housing six motors. The motor racks will feature a
vertical piece with keyhole shaped windows for each
motor to mount into and holes for mounting the motor
with screws. Each motor rack unit will also have two
stabilizing racks built in at the top and bottom and fixed
horizontally to the rack at 90 degree angles. Additional
screw holes on either end of the motor rack unit will
allow for a 3d printed bracket to screw securely into the
sides of the main frame at either end to hold the apparatus
securely in place.

Figure 5. Motor rack with keyhole design. Stabilizing
racks are mounted along the top and bottom edge.

https://www.mcmaster.com/2662n8

Figure 6. An example of one row of the grid, with six
motors in the row. This demonstrates the basic layout

and spatial orientation of our features.

After producing these new rack designs on the laser cutter
we addressed the issue of attaching all three pieces per
rack to each other and mounting them to the outer frame
of the box. We used superglue to adhere the rack pieces to
each other and then 3d printed L-angle brackets that
would mount either end of the rack to the wooden box.
We had originally planned on drilling holes in the box and
the rack to mount these brackets using small screws and
nuts. However, we were concerned with the precision that
would be required to mark where to drill the holes in
exactly the right place for each rack to be perfectly spaced
apart and perfect in height from the bottom of the box,
and with the idea that if we put a hole in the wrong spot
our mistake couldn’t be easily fixed or adjusted. We were
also concerned that the chipboard might split if we tried to
drill two holes in such a small area. Therefore, we
modified our design to use superglue and wood glue to
attach the racks to the box so that we could make last
minute adjustments for precision before the glue set. We
also attached an additional L-angle bracket from the
bottom horizontal piece to the box to prevent rotation of
the racks, as per Professor Guimbretière’s advice. During
their final performance the racks were quite sturdy, and
were not brought off the box by the weight of the stepper
motors nor did they twist or become unstable when the
rods moved up and down within the slots.

User interaction space

The goal of this functional unit is to allow the user to
remotely interact with the block display. The execution of
the user interface has been modified since the initial

prototype from 30 IR sensors in a grid pattern to using an
XBox Kinect. The Kinect is able to detect motion in a 3D
space, and for the purpose of this project, will return the
x, y, z coordinates of the user’s hand in this space. It does
this using an RGB color VGA video camera and a depth
sensor which work together to reconstruct the user’s
motion and image. The Kinect is mounted from above,
and a visual representation of the Kinect’s image is
displayed on the computer to give the user feedback on
their gestures. When the user moves their hand within this
3D space, the Kinect sends data about the user’s hand’s
image and its movements – specifically, the Kinect sends
a byte to indicate which square is being activated and
another byte with the depth data, constrained to a number
between 0 and 9 (0 indicating the user’s gesture as closer
to the Kinect’s camera). This data is then translated to fit
a 30-block grid, where each block on the grid receives the
information of whether there is an object in this space in
the grid and if so, the object’s depth. This information is
sent to the Arduino through the Serial port. Finally, the
information is used to mark which motors need to be run
and in which direction. This process allows
near-simultaneous feedback in the block display based on
the user’s movement under the Kinect.

While the Kinect was able to create an accurate image of
the user’s gestures, there were still a few issues that arose
in its integration with the rest of the design. A small issue
was that the Kinect was reconstructing the image with the
x-y coordinates mapped inversely, i.e. the image was
displaying the opposite of the user’s movements. It was a
challenge to figure out a solution given the way we were
sending data to the three different Arduino boards. The
solution we found was to reconstruct the Kinect’s image
from the bottom corner to the top when the image was
being drawn on the screen. Another issue we faced was
how to communicate with the three different Arduino
boards and distinguish between which motor we were
trying to communicate with. First, we had to set up the
different boards to listen to different Serial ports, then
determine the mapping of each board and its motors.
Originally, 30 bytes were getting sent through a singular
Serial port, and when put into a for-loop, would send the
depth of each motor sequentially, from 1 to 30. However,
the addition of two more boards meant the system had to
first send a byte indicating which of the 30 motors it was
referencing, and the boards had to listen to and process all
of the information being sent. Finally, a challenge we
were unable to overcome was the speed of the motors in
comparison to the real-time feedback being received from
the Kinect. The Kinect was able to quickly reconstruct the
image each time it changed, but the motors had difficulty
catching up to the speed of change and would lag behind.
This was slightly compensated for on the Arduino side by
constantly calculating the current position of the motor

and the distance it needed to move to reach its target
height before the motors were moved, but the
computation and the way the board had to listen to all of
the bytes being sent on the Serial Port before all of the
motors could run simultaneously still caused a delay in
the display.

Combining the functional units to create
gesture-controlled movement

Figure 7. A visual of how the user will interact with
the Kinect in a 3D space.

Figure 8. How the user’s movement corresponds to

each motor in the block display.

The Kinect is mounted on a stand close to the block
display. The user’s gestures below the Kinect which
registers the 3D coordinates. The reading from the Kinect
is stored and manipulated to control the movement of the
blocks in the block display. That is, the field in the Kinect
camera is mapped to the 30 blocks, and the depth sensor
determines the range of motion by the block. In an earlier
iteration of the prototype we intended on using 30 IR
sensors to map the gestures to block movements. Below is
a simplified circuit model depicting how a particular IR
sensor would have mapped to a stepper motor.

Figure 9. Simplified circuit diagram showing the
relationship between input and output.

With the advice of Professor Guimbretière, we decided
that using the Kinect for gesture detection would me more
time efficient and easier to manage.

Originally we planned on using 10 analog pins for the
range sensor, 40 digital pins for the ten motors and 10
digital pins for the 10 blue LEDs for each of 3 Arduino
Megas. Since we abandoned the IR sensor setup, we had
no need for the LEDs. However, we still needed to use 3
Arduino Megas to connect the 30 motors to the digital
pins. Using three Megas also helped us to provide room
within the box for the racks and pinions to move free. In
addition to that, it allowed us to run identical code
through 3 serial ports, each of which controlled a specific
Arduino board. When running the Kinect to communicate
via serial port, it seemed to result in slow movement of
the blocks. So while the Kinect eventually integrated well
and the functionality was present, the movement of the
system was slower than anticipated.

Additional functionality that we were able to implement
was to allow the distance of the user’s hand from the
sensor surface to control for the height of the
corresponding block. This mapping was achieved within

our code by reading the size of the input value from the
range sensor and incrementing the height of each block
according to the relative value. This allows users to not
only control which blocks move but by how much
depending on whether they move their hand closer or
farther from the surface.

FUTURE WORK

There were a few potential areas for improvement
discovered after demonstrating our final prototype.
Although our physical assembly functioned well enough
to create the desired effect, we could have produced more
impressive results had the pins moved faster in response
to user input. In our final prototype the stepper movement
was gradual and so users often had a hard time seeing
how precisely the mapping of their movements was
occurring since they would have to hold their hand in
place long enough for the pins to move into place. Faster
stepper motor movement could have been achieved by
increasing the current limit or supplied voltage, but we
hesitated to damage our motors in the process of
experimentation with increasing the speed. Additionally,
the assembly occasionally had some random blocks
moving based on ghost inputs on the Kinect camera, but
this problem is something we would likely not be able to
solve with our assembly or integration.

REFERENCES

1. American Tech. 2018. Linear engine , How to make
linear motor step by step , science school project
2018. Video. (1 March 2018). Retrieved September
19, 2019 from
https://www.youtube.com/watch?v=Oeoj9ZCQbAk

2. Ahmed Azouz. 2019. Arduino Marble Maze
Labyrinth. Retrieved September 21, 2019 from
https://create.arduino.cc/projecthub/AhmedAzouz/ard
uino-marble-maze-labyrinth-bd9ea6?ref=tag&ref_id=
servo&offset=14

3. Doug Domke. 2019. Servo Motor Artwork. Retrieved
September 22, 2019 from
https://create.arduino.cc/projecthub/doug-domke/serv
o-motor-artwork-79e2d3?ref=platform&ref_id=424_t
rending___&offset=7

4. Sean Follmer, Daniel Leithinger, Alex Olwal,
Akimitsu Hogge, Hiroshi Ishii. 2013. inFORM:
Dynamic Physical Affordances and Constraints
through Shape and Object Actuation. UIST 2013.

5. Daniel Leithinger, Adam Kumpf, Hiroshi Ishii.
2010. Relief: A Scalable Actuated Shape Display.
TEI 2010.

6. Daniel Leithinger, David Lakatos, Anthony
DeVincenzi, Matthew Blackshaw, Hiroshi Ishii.

2011. Recompose: Direct and Gestural Interaction
with an Actuated Surface. CHI 2011.

7. Maartjeeee26. 2017. Instructables. Retrieved
September 21, 2019 from
https://www.instructables.com/id/TfCD-3D-Motion-
Tracking/

8. Moushira. 2017. In Servo We Trust! Retrieved
September 21, 2019 from
https://create.arduino.cc/projecthub/Maya/in-servo-w
e-trust-6725f1?ref=tag&ref_id=servo&offset=43

9. Ken Nakagaki Udayan Umapathi Daniel Leithinger
Hiroshi Ishii. AnimaStage: Hands-on Animated Craft
on Pin-based Shape Displays. DIS 2017.

10. Robot Brigade. 2011. Linear motion using a motor.
Video. (7 June 2011). Retrieved September 19, 2019
from
https://www.youtube.com/watch?v=ifVxd5DLE0g&f
eature=youtu.be

11. thatguyer. (n.d.) NeoPixel Reactive Table. Retrieved
September 21, 2019 from
https://www.instructables.com/id/NeoPixel-Reactive-
Table/

12. WaveHandling: Transporting and sorting in one.
Retrieved September 22, 2019 from
https://www.festo.com/group/en/cms/10225.htm

13. Daniel Windham, Philipp Schoessler, Daniel
Leithinger, Sean Follmer, Hiroshi Ishii. 2015. Kinetic
Blocks - Actuated Constructive Assembly for
Interaction and Display. UIST 2015

https://www.youtube.com/watch?v=Oeoj9ZCQbAk
https://create.arduino.cc/projecthub/AhmedAzouz/arduino-marble-maze-labyrinth-bd9ea6?ref=tag&ref_id=servo&offset=14
https://create.arduino.cc/projecthub/AhmedAzouz/arduino-marble-maze-labyrinth-bd9ea6?ref=tag&ref_id=servo&offset=14
https://create.arduino.cc/projecthub/AhmedAzouz/arduino-marble-maze-labyrinth-bd9ea6?ref=tag&ref_id=servo&offset=14
https://create.arduino.cc/projecthub/doug-domke/servo-motor-artwork-79e2d3?ref=platform&ref_id=424_trending___&offset=7
https://create.arduino.cc/projecthub/doug-domke/servo-motor-artwork-79e2d3?ref=platform&ref_id=424_trending___&offset=7
https://create.arduino.cc/projecthub/doug-domke/servo-motor-artwork-79e2d3?ref=platform&ref_id=424_trending___&offset=7
https://www.instructables.com/id/TfCD-3D-Motion-Tracking/
https://www.instructables.com/id/TfCD-3D-Motion-Tracking/
https://create.arduino.cc/projecthub/Maya/in-servo-we-trust-6725f1?ref=tag&ref_id=servo&offset=43
https://create.arduino.cc/projecthub/Maya/in-servo-we-trust-6725f1?ref=tag&ref_id=servo&offset=43
https://www.youtube.com/watch?v=ifVxd5DLE0g&feature=youtu.be
https://www.youtube.com/watch?v=ifVxd5DLE0g&feature=youtu.be
https://www.instructables.com/id/NeoPixel-Reactive-Table/
https://www.instructables.com/id/NeoPixel-Reactive-Table/
https://www.festo.com/group/en/cms/10225.htm

